
Set 6: Knowledge Representation: 
The Propositional Calculus              

ICS 271 Fall 2014
Kalev Kask



Outline

• Representing knowledge using logic
– Agent that reason logically
– A knowledge based agent

• Representing and reasoning with logic
– Propositional logic

• Syntax
• Semantic 
• Validity and models
• Rules of inference for propositional logic
• Resolution
• Complexity of propositional inference.

• Reading: Russel and Norvig, Chapter 7



Knowledge bases

• Knowledge base = set of sentences in a formal language

• Declarative approach to building an agent (or other system):
– Tell it what it needs to know

• Then it can Ask itself what to do - answers should follow from the KB

• Agents can be viewed at the knowledge level
i.e., what they know, regardless of how implemented

• Or at the implementation level
– i.e., data structures in KB and algorithms that manipulate them



Knowledge Representation
Defined by: syntax, semantics

 Assertions Conclusions

(knowledge base)

Facts Facts

Inference

Imply

Computer

Real-World

Semantics



Reasoning: in the syntactic level

Example: zxzyyx  |,



The party example

• If Alex goes, then Beki goes: A  B

• If Chris goes, then Alex goes: C  A

• Beki does not go: not B

• Chris goes: C

• Query: Is it possible to satisfy all these 
conditions?

• Should I go to the party?



Example of languages 

• Programming languages:
– Formal languages, not ambiguous, but cannot express 

partial information. Not expressive enough.

• Natural languages:
– Very expressive but ambiguous: ex: small dogs and 

cats.

• Good representation language:
– Both formal and can express partial information, can 

accommodate inference

• Main approach used in AI: Logic-based 
languages.



Wumpus World  test-bed
• Performance measure

– gold +1000, death -1000
– -1 per step, -10 for using the arrow

• Environment
•

– Squares adjacent to wumpus are smelly
–

– Squares adjacent to pit are breezy
–

– Glitter iff gold is in the same square
–

– Shooting kills wumpus if you are facing it
–

– Shooting uses up the only arrow
–

– Grabbing picks up gold if in same square
–

– Releasing drops the gold in same square
–

• Sensors: Stench, Breeze, Glitter, Bump, Scream
•

• Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
•



Wumpus world characterization

• Fully Observable No – only local perception

• Deterministic Yes – outcomes exactly specified

• Episodic No – sequential at the level of actions

• Static Yes – Wumpus and Pits do not move

• Discrete Yes

• Single-agent? Yes – Wumpus is essentially a natural feature



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Exploring a wumpus world



Logic in general

• Logics are formal languages for representing information such that conclusions can be 
drawn

• Syntax defines the sentences in the language

• Semantics define the "meaning" of sentences;

– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic

– x+2 ≥ y is a sentence; x2+y > {} is not a sentence

– x+2 ≥ y is true iff the number x+2 is no less than the number y

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6



Summary so far
• Knowledge representation vs problem solving

• General purpose representation + inference engine

• Declarative approach

– Encode rules, facts, observations

– Ask questions (queries)

• Formal languages : syntax, semantics

• Entailment : facts imply facts

• Inference : mechanical manipulation

– Sound

– Complete



Entailment

• Entailment means that one thing follows from another:

KB ╞ α

• Knowledge base KB entails sentence α if and only if α is true in 
all worlds where KB is true

– E.g., the KB containing “the Giants won” and “the Reds won” entails 
“Either the Giants won or the Reds won”

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e. syntax) that is 
based on semantics



Models

• Logicians typically think in terms of models, which are formally structured worlds with 
respect to which truth can be evaluated

• We say m is a model of a sentence α if α is true in m

• M(α) is the set of all models of α

• Then KB ╞ α iff M(KB)  M(α)

– E.g. KB = Giants won and Reds
won α = Giants won All worlds



Entailment in the wumpus world

Situation after detecting nothing in [1,1], moving right, 
breeze in [2,1]

Consider possible models for KB assuming only pits

3 Boolean choices  8 possible models



Wumpus models



Wumpus models

• KB = wumpus-world rules + observations



Wumpus models

• KB = wumpus-world rules + observations
• α1 = "[1,2] is safe", KB ╞ α1, proved by model checking



Wumpus models

• KB = wumpus-world rules + observations



Wumpus models

• KB = wumpus-world rules + observations
• α2 = "[2,2] is safe", KB ╞ α2



Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates basic ideas

• The proposition symbols P1, P2 etc. are sentences

– If S is a sentence, S is a sentence (negation)

– If S1 and S2 are sentences, S1  S2 is a sentence (conjunction)

– If S1 and S2 are sentences, S1  S2 is a sentence (disjunction)

– If S1 and S2 are sentences, S1  S2 is a sentence (implication)

– If S1 and S2 are sentences, S1  S2 is a sentence (biconditional)



Propositional logic: Semantics
Each world specifies true/false for each proposition symbol

E.g. P1,2 P2,2 P3,1

false true false

With these symbols 8 possible worlds can be enumerated automatically.

Rules for evaluating truth with respect to a world w:

S is true iff S is false  
S1  S2 is true iff S1 is true and S2 is true
S1  S2 is true iff S1is true or S2 is true
S1  S2 is true iff S1 is false or S2 is true
i.e., is false iff S1 is true and S2 is false

S1  S2 is true iff S1S2 is true and S2S1 is true

Simple recursive process evaluates an arbitrary sentence, e.g.,
P1,2  (P2,2  P3,1) = true  (true  false) =  true  true = true



Truth tables for connectives



Logical equivalence

Two sentences are logically equivalent iff true in same models: α ≡ ß iff α╞ β and β╞α



Wumpus world sentences

• Rules

– "Pits cause breezes in adjacent squares“

B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

• Observations

– Let Pi,j be true if there is a pit in [i, j].

– Let Bi,j be true if there is a breeze in [i, j].

 P1,1

B1,1

B2,1



Wumpus world sentences

KB
Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].

 P1,1

B1,1

B2,1

• "Pits cause breezes in adjacent squares“

B1,1   (P1,2  P2,1)

B2,1   (P1,1  P2,2  P3,1)

Truth table for KB

1= no pit in (1,2)

2= no pit in (2,2)



Truth Tables
• Truth tables can be used to compute the truth value of any wff (well formed formula)

– Can be used to  find the truth of

• Given n features there are 2n different worlds (interpretations).

• Interpretation: any assignment of true and false to atoms

• An interpretation satisfies a wff (sentence) if the sentence is assigned true under the 

interpretation

• A model: An interpretation is a model of a sentence if the sentence is satisfied in that 

interpretation.

• Satisfiability of a  sentence can be determined by the truth-table

– Bat_on and turns-key_on  Engine-starts

• A sentence is unsatisfiable or inconsistent it has no models

–

–

SQRP  ))((

)( PP 

)()()()( QPQPQPQP 



Decidability – there exists a procedure that will correctly answer Y/N (valid or not) 

for any formula

Gödel's incompleteness theorem (1931) – any deductive system that includes 

number theory is either incomplete or unsound.



Validity and satisfiability
A sentence is valid if it is true in all worlds,

e.g., True, A A, A  A, (A  (A  B))  B

A sentence is satisfiable if it is true in some world (has a model)
e.g., A B, C

A sentence is unsatisfiable if it is true in no world (has no model)
e.g., AA

Validity is connected to inference via the Deduction Theorem:
KB ╞ α if and only if (KB  α) is valid 
(note : (KB  α) is the same as (KB  α))

Satisfiability is connected to inference via the following:
KB ╞ α if and only if (KB α) is unsatisfiable



Validity



Inference methods
• Proof methods divide into (roughly) two kinds:

– Model checking

• truth table enumeration (always exponential in n)

• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland (DPLL), Backtracking 
with constraint propagation, backjumping.

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

– Deductive systems

• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search algorithm

• Typically require transformation of sentences into a normal form



Inference by enumeration

• Depth-first enumeration of all models is sound and complete 

• For n symbols, time complexity is O(2n), space complexity is O(n)



Deductive systems : rules of inference



Resolution in Propositional Calculus
• Using clauses as wffs

– Literal, clauses, conjunction of clauses (CNFs)
• Resolution rule:

– Resolving (P V Q) and (P V  Q)      P
– Generalize modus ponens, chaining .
– Resolving a literal with its negation yields empty clause.

• Resolution rule is sound
• Resolution rule is NOT complete:

– P and R entails P V R but you cannot infer P V R From (P and R) 
by resolution

• Resolution is complete for refutation: adding (P) and (R) 
to (P and R) we can infer the empty clause.

• Decidability of propositional calculus by resolution 
refutation: if a sentence w is not entailed by KB then 
resolution refutation will terminate without generating the 
empty clause.

)( RQP 





Conversion to CNF

B1,1  (P1,2  P2,1)

1. Eliminate , replacing α  β with (α  β)(β  α).
2.

(B1,1  (P1,2  P2,1))  ((P1,2  P2,1)  B1,1)

2. Eliminate , replacing α  β with α β.

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

3. Move  inwards using de Morgan's rules and double-negation:

(B1,1  P1,2  P2,1)  ((P1,2  P2,1)  B1,1)

4. Apply distributivity law ( over ) and flatten:

(B1,1  P1,2  P2,1)  (P1,2  B1,1)  (P2,1  B1,1)



Resolution algorithm

• Proof by contradiction, i.e., show KBα unsatisfiable



Resolution example

• KB = (B1,1  (P1,2 P2,1))  B1,1,   α = P1,2



Soundness of resolution



The party example

• If Alex goes, then Beki goes: A  B

• If Chris goes, then Alex goes: C  A

• Beki does not go: not B

• Chris goes: C

• Query: Is it possible to satisfy all these 
conditions?

• Should I go to the party?



Example of proof by Refutation 

• Assume the claim is false and prove inconsistency:
– Example: can we prove that Chris will not come to the 

party?

• Prove by generating the desired goal.
• Prove by refutation: add the negation of the goal and 

prove no model
• Proof:

• Refutation:

AC

BBA



 ,

CinferAACfrom

AinferBBAfrom





,

,

)( CACBBA 

A
C





Summary so far
• Propositional logic : syntax, semantics

– Truth tables

• Inference

– KB ╞ α iff KB  α is valid

– Valididity, (un)satisfiability

– Soundness, completeness

– Basic methods

• Model checking - DPLL

• Application of inference rules – resolution

• Proof by refutation

– KB ╞ α if and only if (KB α) is unsatisfiable

– Derive empty (CNF) clause : resolution

– Prove that (KB α) has no model : search A*, Backtracking, etc.



Proof by refutation 

• Given a database in clausal normal form KB
– Find a sequence of resolution steps from KB to the empty clauses

• Use the search space paradigm:

– States: current cnf KB + new clauses

– Operators: resolution

– Initial state: KB + negated goal

– Goal State: a database containing the empty clause

– Search using any search method



Proof by refutation (cont.) 

• Or:

– Prove that KB has no model - PSAT

• A CNF theory is a constraint satisfaction problem:

– variables:  the propositions

– domains: true, false

– constraints: clauses  (or their truth tables)

– Find a solution to the csp. If no solution no model.

– This is the satisfiability question

–Methods: Backtracking arc-consistency  unit 
resolution, local search



Resolution refutation search strategies

• Ordering strategies

– Breadth-first, depth-first

– I-level resolvents are generated from level-(I-1) or less resolvents

– Unit-preference: prefer resolutions with a literal

• Set of support:

– Allows resolutions in which one of the resolvents is in the set of support

– The set of support: those clauses coming from negation of the theorem or 
their decendents.

– The set of support strategy is refutation complete

• Linear input

– Restricted to resolutions when one member is in the input clauses

– Linear input is not refutation complete

– Example:  (PVQ) (P V not Q) (not P V Q) (not P V not Q) have no model



Complexity of propositional inference

• Checking truth tables is exponential
• Satisfiability is NP-complete
• However, frequently generating proofs is easy.
• Propositional logic is monotonic

– If you can entail alpha from knowledge base KB and if you add 
sentences to KB, you can infer alpha from the extended knowledge-
base as well.

• Inference is local
– Tractable Classes: Horn, 2-SAT

• Horn theories:
– Q <-- P1,P2,...Pn,

– Pi is an atom in the language, Q can be false.

– : only implications. Clauses have a positive literal
• Solved by modus ponens or “unit resolution”.





Forward chaining algorithm

• Forward chaining is sound and complete for Horn KB



Forward chaining

• Idea: fire any rule whose premises are 
satisfied in the KB,

– add its conclusion to the KB, until query is found



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Forward chaining example



Backward chaining (BC)

Idea: work backwards from the query q:

to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or

2. has already failed



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Backward chaining example



Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD 

program?

• Complexity of BC can be much less than linear in size 
of KB



Propositional inference in practice

Two families of efficient algorithms for propositional inference:

1. Apply inference rules : KB ╞ α if and only if
• (KB α) in unsatisfiable

• (KB  α) is valid

2. Prove that a set of sentences has no model
• (KB α) in unsatisfiable

Complete backtracking search algorithms; on CNF formulas

• DPLL algorithm (Davis, Putnam, Logemann, Loveland)

• Incomplete local search algorithms
– WalkSAT algorithm



The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is 
satisfiable.

Improvements over truth table enumeration:

1. Early termination
A clause is true if any literal is true.
A sentence is false if any clause is false.

2. Pure symbol heuristic
Pure symbol: always appears with the same "sign" in all clauses. 
e.g., In the three clauses (A  B), (B  C), (C  A), A and B are pure, C is impure. 
Make a pure symbol literal true.

3. Unit clause heuristic
Unit clause: only one literal in the clause
The only literal in a unit clause must be true.



The DPLL algorithm



The WalkSAT algorithm

• Incomplete, local search algorithm

• Evaluation function: The min-conflict heuristic of minimizing 
the number of unsatisfied clauses

• Balance between greediness and randomness
– Pick an unsatisfied clause

• With some probability pick literal to flip randomly

• Otherwise pick a literal that minimizes the min-conflict value

– Restart every once in awhile



The WalkSAT algorithm



Hard satisfiability problems

• Consider random 3-CNF sentences. e.g.,

(D  B  C)  (B  A  C)  (C  B  E)  (E 
D  B)  (B  E  C)

m = number of clauses 
n = number of symbols

– Hard problems seem to cluster near m/n = 4.3 (critical 
point) – phase transition



Hard satisfiability problems



Hard satisfiability problems

• Median runtime for 100 satisfiable random 3-CNF sentences, n = 50



Inference-based agents in the wumpus 
world

A wumpus-world agent using propositional logic:

P1,1

W1,1

Bx,y  (Px,y+1  Px,y-1  Px+1,y  Px-1,y) 
Sx,y  (Wx,y+1  Wx,y-1  Wx+1,y  Wx-1,y)
W1,1  W1,2  …  W4,4

W1,1  W1,2

W1,1  W1,3

…

 64 distinct proposition symbols, 155 sentences






